Amidst the excitement for the original iPhone way back in 2007 was a big question: would users be able to adjust to typing on a touchscreen, with no visual or tactile cues for orienting your fingers? Five years later, it's clear that the keyboard-less touch screen has become the preferred mobile phone form factor — that said, some users out there still long for the physical response of a BlackBerry while still maintaining the flexibility of a touchscreen display. RIM unsuccessfully tried to solve that problem with the generally-loathed SurePress technology on the BlackBerry Storm some years ago — but now Tactus Technology thinks it has the right technology to succeed where RIM failed.

Today at SID Display Week 2012, the company is showing off a prototype Android tablet with an appearing and disappearing haptic feedback user interface — at a user's command, "keys" can rise out of the touchscreen to provide a tactile guide for both placement of your fingers and for feedback to confirm your selection. These keys can be dismissed and recede back into the touchscreen without barely a hint that they were even there. We had a chance to meet with Craig Ciesla, CEO and co-founder of Tactus Technology, who let us take a look at the technology he's spent the last four years developing and can finally show off to the public for the first time.

The technology is based on "microfluidics" — beneath the surface of a fairly ordinary-looking touchscreen are a number of channels that can be arrange in any pattern a manufacturer desires, and a small reservoir of fluid (a special type of oil that allows the channels to be invisible, for the most part). To form the shapes of the keys, a tiny amount of fluid is pumped through the channels, which raises a deformable membrane covering the surface of the touchscreen. For now, the channels need to be made in a predetermined patter — say, an outline of a QWERTY keyboard for a tablet — but the long-term goal would be to have much finer control over a wide-ranging variety of patterns, so different apps and configurations can all take advantage of the potential for offering greater physical feedback.

There are some interesting ideas in play here, despite the early alpha status

If this doesn't sound entirely intuitive, there's a good reason — there's really no other technology on the market like this, and it's exactly the kind of thing you need to see and touch to really understand. Even in its extreme alpha state, the few minutes we spend trying the prototype unit showed us that Tactus has some intriguing technology on hand, though it'll need fine-tuning before it can be a viable option for consumers. The key outlines did provide some feedback as to where individual keys start and end, but the physical act of "pressing" a key didn't provide much feedback yet. Much of the time, it felt as though the capacitive touchscreen was triggered before you had a chance to feel the travel of the fluid-filled area. Even though the technology isn't ready for prime time, it was pretty fascinating to see a set of keys rise up out of what appears to be a bog-standard touchscreen. Still, once you notice the outlines of where the keys appear and disappear, they're hard to un-see (though we expect future versions will more naturally integrate the microfluid channels).

There's other limitations as well, at least for now — as we mentioned, once the fluid channels are built into a piece of hardware, they can't be changed. So while the configuration that we were shown fit a landscape QWERTY keyboard nicely, we wouldn't have been able to use the technology in portrait mode, for example. However, it sounds like apps will have the option only to raise specific groups of keys or sections of the screen, allowing for a bit more flexibility in the interim — until the full-screen, fully customizable screens are ready some years down the road.

"The end user gets to choose what feel they like."

VP of business development Nate Saal told us how customization of the tactile response was one of the mainbenefits of the fluid-based system, saying that "you can change the pressure, you can change the resistance, and allow people to customize the feel, something you can't do on a physical keyboard with physical buttons." The result is that "the end user gets to choose what feel they like." Down the line, once the technology has further progressed, the team thinks that the fluid system will allow screens to measure variations in pressure, giving the buttons have a sort of "analog" response like most popular video game controllers.

Another benefit of this system is low power consumption — Ciesla told us that on an average day of use, his team expects "less than two percent battery drain for the whole day." While describing the system, he noted that "it takes a second or two for the buttons to come up, and then they stay up, our controller shuts off, and the keys stay up indefinitely." This makes the system "incredibly power efficient, because all you need is that brief second to get the keyboard on, and then it stays on."

As for the different applications of this technology, smartphones and tablets may be the first things that come to mind, but Tactus is planning to cast a wider net. Particularly, the company sees a potential use case in automobiles; as touchscreen and touch-sensitive controls (and the minimal inherent physical feedback) become more popular in cars, a way to provide drivers with a way to physically orient themselves to their control panels could be a valuable tool. We're still a ways off from this technology being widely deployed, but at least Tactus can finally show off what it has been working on to the world. While the company has no hardware partnership it's willing to speak on the record about, it remains confident that Tactus will bring its new haptics to shipping products in 2013.