Skip to main content

Qualcomm builds learning computer chip inspired by human brain

Qualcomm builds learning computer chip inspired by human brain

Share this story

Computer technology still lags far behind the abilities of the human brain, which has billions of neurons that help us simultaneously process a plethora of stimuli from our many senses. But Qualcomm hopes to shrink that bridge with a new type of computer architecture modeled after the brain, which would be able to learn new skills and react to inputs without needing a human to manually write any code. It's calling its new chips Qualcomm Zeroth Processors, categorized as Neural Processing Units (NPUs), and already has a suite of software tools that can teach computers good and bad behavior without explicit programming.

Learning without code

Qualcomm demoed its technology by creating a robot that learns to visit only white tiles on a gridded floor. The robot first explores the environment, then is given positive reinforcement while on a white tile, and proceeds to only seek out other white tiles. The robot learns to like the white tile due to a simple "good robot" command, rather than any unique algorithm or code.

The computer architecture is modeled after biological neurons, which respond to the environment through a series of electrical pulses. This allows the NPU to passively respond to stimuli, waiting for neural spikes to return relevant information for a more effective communication structure. According to MIT Technology Review, Qualcomm is hoping to have a software platform ready for researchers and startups by next year.

Qualcomm isn't the only company working on building a brain-like computer system. IBM has a project known as SyNAPSE that relates to objects and ideas, rather than the typical if-this-then-that computer processing model. This new architecture would someday allow a computer to efficiently recognize a friendly face in a crowd, something that takes significant computing power with today's current technology. Modeling new technology after the human brain may be the next big evolutionary step in creating more powerful computers.